
 

RBF-BASED MESH-LESS METHOD FOR LARGE DEFLECTION OF THIN PLATES 

MOHAMMAD AMIN RASHIDIFAR 1 & ALI AMIN RASHIDIFAR 2 

1Department of Mechanical Engineering, Islamic Azad University, SHADEGAN Branch, Iran 
2Department of Computer Science, Islamic Azad University, SHADEGAN Branch, Iran 

 

ABSTRACT 

A simple, yet accurate, mesh-less method for the solution of thin plates undergoing large deflections is presented. 

The method is based on collocation with 5th order polynomial radial basis function. In order to address the in-plane edge 

conditions, two formulations, namely w-F and u-v-w are considered for the movable and immovable edge conditions, 

respectively. The resulted coupled nonlinear equations for the two cases are solved using an incremental-iterative 

procedure. The accuracy and efficiency of the method is verified through several numerical examples. 
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INTRODUCTION  

In some applications of thin elastic plates, the deflections may increase under loading conditions beyond a certain 

limit recognized as large deformations. Because of these large deformations, the mid plane stretches and hence produces 

considerable in-plane stresses that are neglected by the small-deflection bending theory. For instance, in the case of circular 

plate with a clamped edge subject to uniform load and having a central deflection of 100% of its thickness, the maximum 

stretching stress is approximately 40% of the maximum bending stress [1]. For such situations, an extended plate theory 

must be employed, accounting for the effect of large deflections. Large elastic deflection of a thin elastic plate is governed 

by coupled non-linear differential equations, as discussed in the next section of the paper, for which analytical solutions are 

available only for very few cases involving simple geometries and loading conditions [1 through 5]. For other cases,               

the problem has to be solved using numerical techniques such as the finite difference methods (FDM), the finite element 

methods (FEM) and the boundary element methods (BEM). 

Nevertheless, the possibility of obtaining numerical solutions without resorting to the mesh based techniques 

mentioned above, has been the goal of many researchers throughout the computational mechanics community for the past 

two decades or so. Radial Basis Function (RBF)-based collocation method, as one of the most recently developed 

numerical techniques, so-called mesh free or mesh less methods, has attracted attention in recent years especially in the 

area of computational mechanics [6,7, 8]. This method does not require mesh generation which makes them advantageous 

for 3-D problems as well as problems that require frequent re-meshing such as those arising in nonlinear analysis.              

Due to its simplicity to implement, it represents an attractive alternative to FDM, FEM and BEM as a solution method of 

nonlinear differential equations. However, it is only since rather recently that the RBFs have been used to approximate 

solutions to partial differential equations and therefore this area is still relatively unexplored. 

The roots of RBF go back to the early 1970s, when it was used for fitting scattered data [9]. In 1982, Nardini and 

Brebbia coupled RBF with BEM in a technique called dual reciprocity-boundary element method to solve free vibration 

problems, where the RBF was used to transform the domain integrals into boundary integrals [10]. Thereafter, many 

researchers have used RBF in conjunction with BEM to solve various problems in computational mechanics. 
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The method however has not been applied directly to solve partial differential equations until 1990 by Kansa         

[11, 12]. Since then,   many researchers have suggested several variations to the original method. In general, RBF-based 

collocation method expands the solution of a problem in terms of radial basis functions and chooses expansion coefficients 

such that the governing equations and boundary conditions are satisfied at some selected domain and boundary points. 

However, one of the important issues in applying this technique is the determination of the proper form of radial basis 

function for a given differential equation. Most of the available radial basis functions involve a parameter called shape 

factor which needs to be selected so that the required accuracy of the solution is attained. The selection of shape factors for 

different problems has been the subjective of many studies. In this paper, however, the simple 5th order polynomial RBF 

that does not involve a shape parameter is considered. The objective of this paper is to offer a simple yet accurate              

mesh-free method for the solution of thin elastic plates undergoing large deflection. The method is also applicable to other 

non-linear problems in various areas of computational mechanics. 

GOVERNING EQUATIONS 

w -F Formulation 

The governing equations for large deflection of plates can be expressed in terms of the deflection w and a stress 

function F [1]: 
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Where q is the distributed load, h is the plate thickness and D is the flexural rigidity of the plate. The stress 

function F is related to the membrane forces   xN , yN  and xyN  by the following differential operators: 
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The bending moments Mx, My & Mxy are related to w by the following differential operators respectively: 
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The equivalent transverse shear forces Vx, Vy are given by: 

y

M
QV xy

xx ∂
∂

−= ,
x

M
QV xy

yy ∂
∂

−= ,                                                                                                                       (5) 



RBF-Based Mesh-Less Method for Large Deflection of Thin Plates                                                                                                                                 7 
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The general boundary conditions for large deflection of plates can be classified into two types: 

• Transverse boundary conditions which are encountered in both small and large deflection formulations.                

For this type, we will consider that at each boundary point there are two prescribed boundary conditions: 

( ) 01 =wBCw   Where    ( ) ( ) nww VwBCorwwBC == 11                                                                            (7-a) 

( ) 02 =wBCw    Where    ( ) ( ) nww MwBCor
n

w
wBC =

∂
∂= 22                                                                    (7-b) 

• In-plane boundary conditions which have to be addressed in the case of large deflection formulation. For this type, 

there are two possibilities:  

o Movable Edge 

( ) ( ) 021 == FBCFBC FF    Where ( ) ( )
n

F
FBCFFBC FF ∂

∂== 21 &                                           (8-a) 

The above two conditions are equivalent to zero in plane edge forces 

o Immovable Edge 

u = v =0                                                                                                                                                                 (8-b) 

It should be noted that the w-F formulation given above is readily applicable for only the movable edge case such 

that 0=
∂
∂=

n

F
F . However, in the case of immovable edge, it is extremely difficult to establish the boundary conditions 

in terms of the stress function and therefore, the Fw −  formulation cannot be used directly. This fact might explain the 

rareness of the later case in the available literature on numerical solution for large deflection of plates. In the present study, 

the problem is overcome by deriving the governing equations in terms of the three displacemts components u, v and w as 

discussed in the following sub-section. 

u-v-w Formulation 

The details of the derivation can be found in reference [13]. For briefest, we present only the final equations: 
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The form of transverse boundary conditions considered for this formulation is the same as that for the                        

w-F formulation while the in-plane boundary condition is the one that corresponds to the immovable case, i.e. u = v =0. 

RBF for w-F formulation 

Consider the 2-D computational domain (Figure 1) that represents the plate geometry. For collocation, we use 

node points distributed both along the boundary( )B
j
B Njx ,...,1, = , and over the interior( )D

j
D Njx ,....,1, = .             

Let xp= {xB , xD}, so that the total number of points called poles is Np = NB +ND. The deflection,w , is interpolated linearly 

by suitable radial basis functions: 
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Similarly, for the stress function, F: 
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Where Φ is the the 5th order polynomial given by 
5jxx − . This radial basis function has the important 

advantage of not being dependent on a shape factor as the case for other radial basis functions. The 4NB +2ND unknown 

coefficients: j
wα , j

wβ , j
wγ , j

Fα , j
Fβ  and j

Fγ  can be determined by satisfying the governing equations at the ND domain 

points, and by satisfying the corresponding boundary conditions at the NB boundary points. The resulted equations can be 

expressed in the following matrix form: 
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Where ),( FwNL  = 
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is obtained by replacing F by w in the foregoing expression. 

In order to solve the above coupled and highly non-linear equations, the following incremental-iterative procedure 

is performed. In the following, the superscripts represent increments while subscripts represent iterations. As an example, 

the quantity 
k

xyiw , represents the second derivative of w with respect to x for the kth increment and ith iteration.                      

This notation, however, does not apply to the coefficients j
wα , j

wβ , etc. 

• Apply the first load increment (k = 1) and obtain the solution of (15) and (16) by iterating the following steps: 

o Set the initial values of the second derivatives of w  and F to zero, i.e.:
1

,0 xxF =
1

,0 yyF =
1

,0 xyF = 

1

,0 xxw =
1

,0 yyw = 
1

,0 xyw  = 0 (In other words, the initial value of ),( 1

0

1

0 FwNL  is equal to zero) and solve 

(15) for the coefficients j
wα , j

wβ , j
wγ . 

o Use (13) to obtain the first estimate of deflection 
1

1w  and calculate ),( 1
1

1
1 wwNL . Note that                            

1

1w  corresponds to the solution of small deflection theory for the first increment. 

o Solve (16) for the for the coefficients j
Fα , j

Fβ  and j
Fγ  then use them in (14) to obtain the first estimate of 

the stress function 
1

1F  

o Update the right hand side of (14) by calculating ),( 1
1

1
1 FwNL and solve (15) for updated values of the 

coefficients j
wα , j

wβ , j
wγ . 

o Use (13) to obtain the second estimate of deflection 
1

2w  and calculate ),( 1
2

1
2 wwNL  

o Repeat steps (c) to (e) until convergence is achieved. 

• Use the values obtained for ),( 11
nn FwNL at the last iteration of the first load increment and add another load 

increment, then repeat steps (a) to (f). 
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• Continue adding increments until the total load is applied. 

RBF for u-v-w Formulation 

The deflectionw  is given by equation (13), while the in-plane deflections u and υ  are given by:  
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Following the same procedure explained for the w-F formulation, we get the following two sets of coupled               

non-linear equations:   
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NUMERICAL EXAMPLES 

The Following Numerical Examples Present the large deflection solution using RBF-based collocation 

method. The computer coding is done using the symbolic package Mathematica which enables finding the solutions for 

deflection and stresses as continuous functions of x and y. In all examples, the load is assumed to be uniformly distributed 

= q, Poisson ratio ν  is assumed 0.3. For generality of the solutions, all results are made dimensionless, so that the 

coordinates, the load, the deflection and the stress are represented by axx /= , ayy /= , 44 / Ehqaq = , hww /=  and 

22 / Ehaσσ = , respectively. 

Example 1 

A simply supported square plate ( 0== Mw ) with edges free to move boundary conditions 0=
∂
∂

=
n

F
F . The plate is 

subjected to a uniformly distributed load q  with a range of 322 ≤≤ q . The nodal distribution includes 36 boundary nodes 

and 81 domain nodes according to Figure 2. The maximum deflection at the centreline as obtained by the RBF method is 

compared to the one obtained by the finite element method software ANSYS. The two solutions are compared very well 

with a maximum error 0.86%. The membrane and bending stresses are compared in figure 1, respectively which shows 

again a very well agreement between the two solutions. 
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Figure 1: Stresses at the Centred for Simply Supported Circular Plate 

Example 2 

A clamped circular plate ( 0=
∂
∂=

n

w
w ) with edges free to move boundary conditions ( 0=

∂
∂=

n

F
F ) under 

uniformly distributed load q  with a range of 0.85.0 ≤≤ q . The solution of this problem used 32 boundary nodes and  

69 domain nodes. The deflection and stress solutions of the problem are given in figure 2-3. In figure 2, the analytical, 

FEM and RBF solutions for the maximum deflection at the centre of the plate are given. The figure shows that the three 

solutions are in good agreement. The results for the membrane and bending stresses are given in figure 3. The results in 

these figures show that while the two numerical solutions (RBF and FEM) are in good agreement both of them deviates 

from the analytical solution especially for higher loads. Observed deviations of the numerical solutions from the analytical 

solution can be attributed to the acknowledged inherent approximation of the analytical solution [1]. 

 

Figure 2: Central Deflection versus Load for Clamped Circular Plate 

 

Figure 3: Stresses at the Centre for Clamped Circular Plate 
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Example 3 

Consider a simply supported square plate subjected to a uniformly distributed load q which is increased from 2 to 

32 with equal increments of 2. There is no analytical solution available for this problem and therefore the RBF solution is 

compared with FEM solution only. 

 

Figure 4: Central Deflection versus Load for Clamped Square Plate 

 
Figure 5: Stresses at the Center for Clamped Square Plate 

CONCLUSIONS 

A simple mesh-less method for the analysis of thin plates undergoing large deflections is presented. The method is 

based on collocations with the fifth order polynomial radial basis function. This radial basis function does not require a 

shape parameter that needs to be specified as the case for other well known radial basis functions. In addition, the method 

shares the same advantage of other RBF methods that do not require the computation of integrals or use of grids and 

meshes. The method also has the advantage of simplicity and has the important advantage of not being dependent on a 

shape factor as the case for other radial basis functions. 
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