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ABSTRACT

A simple, yet accurate, mesh-less method for thatiea of thin plates undergoing large deflectiosmpresented.
The method is based on collocation with &der polynomial radial basis function. In orderatdress the in-plane edge
conditions, two formulations, namely-F and u-v-w are considered for the movable and immovable exgyelitions,
respectively. The resulted coupled nonlinear equatifor the two cases are solved using an incrah#etative

procedure. The accuracy and efficiency of the nebthwerified through several numerical examples.
KEYWORDS: RBF, Mesh-Less, Plate, Movable, Inmovable Edge
INTRODUCTION

In some applications of thin elastic plates, thiéedions may increase under loading conditionsopelya certain
limit recognized as large deformations. Becausthes$e large deformations, the mid plane stretchdshance produces
considerable in-plane stresses that are neglegtételsmall-deflection bending theory. For instaneehe case of circular
plate with a clamped edge subject to uniform load baving a central deflection of 100% of its thieks, the maximum
stretching stress is approximately 40% of the maximbending stress [1]. For such situations, anneldd plate theory
must be employed, accounting for the effect ofdangflections. Large elastic deflection of a tHaséc plate is governed
by coupled non-linear differential equations, asdssed in the next section of the paper, for whidlytical solutions are
available only for very few cases involving simgleometries and loading conditions [1 through 5]t Bther cases,
the problem has to be solved using numerical teghes such as the finite difference methods (FDNB,finite element
methods (FEM) and the boundary element methods (BEM

Nevertheless, the possibility of obtaining numdrisalutions without resorting to the mesh basednapes
mentioned above, has been the goal of many resrartdiroughout the computational mechanics commdaitthe past
two decades or so. Radial Basis Function (RBF)dbasdlocation method, as one of the most recendyetbped
numerical techniques, so-called mesh free or mes$ fnethods, has attracted attention in recens yesmecially in the
area of computational mechanics [6,7, 8]. This mettioes not require mesh generation which makes #uvantageous
for 3-D problems as well as problems that requiegdent re-meshing such as those arising in naidia@alysis.
Due to its simplicity to implement, it representsattractive alternative to FDM, FEM and BEM asoéuson method of
nonlinear differential equations. However, it islyosince rather recently that the RBFs have bee us approximate

solutions to partial differential equations andrétiere this area is still relatively unexplored.

The roots of RBF go back to the early 1970s, whevas used for fitting scattered data [9]. In 1982rdini and
Brebbia coupled RBF with BEM in a technique calthdhl reciprocity-boundary element method to sohee fvibration
problems, where the RBF was used to transform timeaith integrals into boundary integrals [10]. Tladter, many

researchers have used RBF in conjunction with B&gbive various problems in computational mechanics
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The method however has not been applied directlyotge partial differential equations until 1990 Kgnsa
[11, 12]. Since then, many researchers have stemgjeseveral variations to the original methodgéneral, RBF-based
collocation method expands the solution of a pnobile terms of radial basis functions and choosgsiesion coefficients
such that the governing equations and boundaryittonsl are satisfied at some selected domain anchdary points.
However, one of the important issues in applying technique is the determination of the propemfaf radial basis
function for a given differential equation. Most thie available radial basis functions involve aapagter called shape
factor which needs to be selected so that the medjaiccuracy of the solution is attained. The $ele®f shape factors for
different problems has been the subjective of metoglies. In this paper, however, the simpfeosder polynomial RBF
that does not involve a shape parameter is coresidérhe objective of this paper is to offer a siengkt accurate
mesh-free method for the solution of thin elastatgs undergoing large deflection. The methodss applicable to other

non-linear problems in various areas of computafiomechanics.

GOVERNING EQUATIONS

w -F Formulation

The governing equations for large deflection otgdacan be expressed in terms of the defleati@md a stress
functionF [1]:

. _hlq (0°F)o*w) (0°F ) o*w 0°F | 0°w
Dfw=— |+ 2 2 | T 2 2 |2 @)
D|h {dy" |\ ox ox“ )\ dy 0xdy )\ oxoy
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Where Qis the distributed loady is the plate thickness arid is the flexural rigidity of the plate. The stress

functionF is related to the membrane forcebl,, Ny and ny by the following differential operators:

2 2 2
i NSy AL VI 3)
ay? ox oxay

The bending momentd,, My & M,, are related to w by the following differential sators respectively:

M, =- D{62W+vazw+J (4-a)
ox: oy’
2 2
M, =-p| I W4, 0W, (4-b)
y ay2 ax2
2
M, =D@a-v) oW (4-c)
oxoy

The equivalent transverse shear forggs/, are given by:

VX:QX— XyiVy =Q, - v, (5)
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WhereQX:_D:X(D W) Qy:—Daay(D W) ©)

The general boundary conditions for large deflectbplates can be classified into two types:

e Transverse boundary conditions which are encouthténe both small and large deflection formulations.

For this type, we will consider that at each boumggeint there are two prescribed boundary cond#io

BC,,(w)=0 where BC,,(w)=w or BC,,(w)=V, (7-a)
BC,,(W)=0 where BCWz(w)zg—an or BC,,(w)=M, (7-b)

» In-plane boundary conditions which have to be askird in the case of large deflection formulaticor. this type,

there are two possibilities:

o Movable Edge

oF

BC.,(F)=BC.,(F)=0 wnereBC, (F)=F &BC,,(F )=a— (8-a)
n

The above two conditions are equivalent to zengame edge forces

o Immovable Edge

u=v=0 (8-b)

It should be noted that thveF formulation given above is readily applicable émly the movable edge case such

oF
thatF = 6_ = 0. However, in the case of immovable edge, it isesxely difficult to establish the boundary condito
n

in terms of the stress function and therefore, Wle- F formulation cannot be used directly. This fact migxplain the
rareness of the later case in the available liteeadn numerical solution for large deflection &dtps. In the present study,
the problem is overcome by deriving the governiggations in terms of the three displacemts compisnerv andw as

discussed in the following sub-section.
u-v-w Formulation

The details of the derivation can be found in efee [13]. For briefest, we present only the fewlations:

L,,(u) + L, () = NL, (w) ©)
L, (v) + L,,(u) = NL,(w) (10)
D“W:%+ NL, (u,0, w) (1)
Where,

20, +(1-V)0,,

(12-a)
u 21-v?) :
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L =Y (b-

2A1-v)

_20,+@1-v)o,,

== ) e
NL () = - L+ v)w w, + z\g Ez\:/:jx +(1-v)w,) | (120)
NL, (w) = - Ly, +2\€:/Ly_((\];z_ )V)Wxx raw,) (12-e)
N (000)= g, <0, v )

Ehw

+7—)xx 2u +w: +vl2u, + W’
2D l_VZ ( X X ( y y))

+ Ew, (20, + w2 +v(2u, +w?)) (12-9)

2Dil—v25 Y Y * *

The form of transverse boundary conditions considefor this formulation is the same as that for the
w-F formulation while the in-plane boundary conditisrthe one that corresponds to the immovable ¢ase,= v =0.
RBF for w-F formulation

Consider the 2-D computational domain (Figure Bt tlepresents the plate geometry. For collocatien,use
node points distributed both along the bountﬁgéy,j =1,...,NB), and over the interic(g(lj),j =1,....,ND).

Let x;= {Xs, Xp}, SO that the total number of points called patell, = Ng +Np. The deflectionw, is interpolated linearly

by suitable radial basis functions:
w(x)= 3 aio(x-x1])+ > sisc,.(o(x-xi|)+ X visc.. (o (x - xi]) (13)
i=1 i=1 '

Similarly, for the stress functiof;

F(x)= _NZjlaéq>G\>_<—>_<JDH)+ _NZiﬁé ac o, (0 (x - x4 )+ 3y ac ., (o (x - x.|) (14)

j=1

15
Where ®is the the % order polynomial given b)Hl(—l(JH . This radial basis function has the important

advantage of not being dependent on a shape fasttre case for other radial basis functions. Tie+#2Np unknown
coeﬁicientsﬂv{,, v’v yvjv, O’Fj \ ,BF‘ andyFj can be determined by satisfying the governing tous at theNp domain

points, and by satisfying the corresponding boupdanditions at thé&z boundary points. The resulted equations can be

expressed in the following matrix form:
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[BCy(®) BCu(BCw(®)) BCwm(BCw(®))] |di, 0 0
BCu2(®) BCu2(BCw(®) BCw2(BCw2(@)| - |4, [= | O] +| © (15)
D% D4BCu(®)  04(BCw(®)) v, % % NL(w,F)
w 1 lal]
°o o = F o
o 0 90 i | 0
an  an 6n(6nj ,3,: - E (16)
E
0% D% D“'[aﬁ] i T NHww
on _yF )

2 2 2 2 2 2
where NL(W,F) = N [O7F ot [ O7F | o"w -2 O°F | 0w and NL(w,w)
D({ ay* )\ ox? x> )\ oy? oxay )\ oxay

is obtained by replacing by w in the foregoing expression.

In order to solve the above coupled and highly lw@ar equations, the following incremental-itevatprocedure

is performed. In the following, the superscriptpresent increments while subscripts representtibei As an example,

the quantity V\Iikxy represents the second derivative of w with respeck for the K' increment and™ iteration.

This notation, however, does not apply to the iciefftsar] , I etc.

w !

« Apply the first load increment (k = 1) and obtae tsolution of (15) and (16) by iterating the fellag steps:

o

Set the initial values of the second derivatives W and F to zero, i.e.Folxx= Folyy= F01Xy=
Wcl)’xx=W(1)vyy= VV(l)'Xy = 0 (In other words, the initial value QL (WX, Fh is equal to zero) and solve

(15) for the coefficientsy),, Vf,yvlv

Use (13) to obtain the first estimate of deflectilel and calculatgyL (w;,w}). Note that

Wl1 corresponds to the solution of small deflecticgotly for the first increment.

Solve (16) for the for the coefficienﬁ'Fj , ,[a’,i andij then use them in (14) to obtain the first estinwite
the stress functiorF,"

Update the right hand side of (14) by calculating (w,, F,') and solve (15) for updated values of the
coeﬁicientﬂvjv, Vf,yv’v

Use (13) to obtain the second estimate of defl«ac\)ﬁiilL and calculateNL (wi,w;})

Repeat steps (c) to (e) until convergence is aekiev

» Use the values obtained faoyL_ (w!,Fhat the last iteration of the first load incrementaadd another load

increment, then repeat steps (a) to (f).



10 Mohammad Amin Rashidifar & AliAmin Rashidifar

e Continue adding increments until the total loadpglied.
RBF for u-v-w Formulation

The deflectiorw is given by equation (13), while the in-plane deflonsU and U are given by:

u(x) = J.NEZUJ ‘pmz(—l(.jau) (17)
v(x)= §GJ¢Q\5 ~xJ as)

Following the same procedure explained for W& formulation, we get the following two sets of céeg

non-linear equations:

) 0 a u‘ 0
0 0) 0
' = (19)
Li(P)  L(®) NL, (w)
L, (®) L, (@) |a. NL, ()
[BCw(®) BCw(BCw(®) BCwm(BCw2(®))] |ai, 0 0
BCu2(®) BCw2(BCw(®)) BC.w2(BCW2(@)| - |4, |= || +| O (20)
| 0% D4(BCw(®)  0*(BCw(®)) Vo % NLg(u,u, )

NUMERICAL EXAMPLES

The Following Numerical Examples Preseaht large deflection solution using RBF-based aaition
method. The computer coding is done using the sjimpackageMathematica which enables finding the solutions for
deflection and stresses as continuous functionsasfd y. In all examples, the load is assumed tortirmly distributed

= ¢, Poisson ratid/ is assumed 0.3. For generality of the solutiofisyesults are made dimensionless, so that the

coordinates, the load, the deflection and the staes represented By=x/a,y =y/a,q =ga*/Eh* W =w/h and
T =0a’ | Eh?, respectively.
Example 1

A simply supported square plate£ M =0) with edges free to move boundary conditipngF _, . The plate is
on

subjected to a uniformly distributed Ioa_]]j with a range of<g<32. The nodal distribution includes 36 boundary nodes

and 81 domain nodes according to Figure 2. The maxi deflection at the centreline as obtained byRB& method is
compared to the one obtained by the finite elemegthod software ANSYS. The two solutions are comgparery well
with a maximum error 0.86%. The membrane and bendiresses are compared in figure 1, respectiveighwshows

again a very well agreement between the two salstio
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Figure 1: Stresses at the Centred for Simply Suppeed Circular Plate

Example 2

A clamped circular platef = ow _ o) with edges free to move boundary conditiops £ oF _ 0) under
on on

uniformly distributed Ioada with a range of0.5< @ < 8.0. The solution of this problem used 32 boundaryesoand

69 domain nodes. The deflection and stress sokitidrthe problem are given in figure 2-3. In fig@tethe analytical,
FEM and RBF solutions for the maximum deflectiortteg centre of the plate are given. The figure shtvat the three
solutions are in good agreement. The results fermtembrane and bending stresses are given in fRjuf@e results in
these figures show that while the two numericalsohs (RBF and FEM) are in good agreement botthein deviates
from the analytical solution especially for higheads. Observed deviations of the numerical sahgtipom the analytical

solution can be attributed to the acknowledgedriafieapproximation of the analytical solution [1].
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Figure 2: Central Deflection versus Load for Clampe Circular Plate
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Figure 3: stressesat the Centre for Clamped Circular Plate
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Example 3

Consider a simply supported square plate subjegotaduniformly distributed load q which is incredgeom 2 to
32 with equal increments of 2. There is no anaytsolution available for this problem and therefthhe RBF solution is

compared with FEM solution only.
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Figure 4: Central Deflection versus Load for Clampe Square Plate
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Figure 5: Stresses at the Center for Clamped Squarelate
CONCLUSIONS

A simple mesh-less method for the analysis of tiétes undergoing large deflections is presentbd.method is
based on collocations with the fifth order polynahriadial basis function. This radial basis funataoes not require a
shape parameter that needs to be specified asseefar other well known radial basis functionsattdition, the method
shares the same advantage of other RBF methodsldhatt require the computation of integrals or aégrids and
meshes. The method also has the advantage of sity@ind has the important advantage of not begeddent on a

shape factor as the case for other radial basdituns.
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